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Abstract—We associate convex regions in R
n to m-primary graded sequences of subspaces,

in particular m-primary graded sequences of ideals, in a large class of local algebras (including
analytically irreducible local domains). These convex regions encode information about Samuel
multiplicities. This is in the spirit of the theory of Gröbner bases and Newton polyhedra on the
one hand, and the theory of Newton–Okounkov bodies for linear systems on the other hand.
We use this to give a new proof as well as a generalization of a Brunn–Minkowski inequality
for multiplicities due to Teissier and Rees–Sharp.
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1. INTRODUCTION

The purpose of this note is to employ, in the local case, techniques from the theory of semigroups
of integral points and Newton–Okounkov bodies (for the global case) and to obtain new results as
well as new proofs of some previously known results about multiplicities of ideals in local rings.

Let R = OX,p be the local ring of a point p on an n-dimensional irreducible algebraic variety X
over an algebraically closed field k. Let m denote the maximal ideal of R and let a be an m-primary
ideal, i.e. a is an ideal containing a power of the maximal ideal m. Geometrically speaking, a is
m-primary if its zero set (around p) is the single point p itself. Let f1, . . . , fn be n generic elements
in a. The multiplicity e(a) of the ideal a is the intersection multiplicity, at the origin, of the
hypersurfaces Hi = {x | f(x) = 0}, i = 1, . . . , n (it can be shown that this number is independent
of the choice of the fi). According to the Hilbert–Samuel theorem, the multiplicity e(a) is equal to

n! lim
k→∞

dimk(R/ak)
kn

.

(This result is analogous to Hilbert’s theorem on the Hilbert function and degree of a projective
variety.) More generally, let R be an n-dimensional Noetherian local domain over k (where k is
isomorphic to the residue field R/m and m is the maximal ideal). Let a be an m-primary ideal of R.
Since a contains a power of the maximal ideal m, R/a is finite dimensional regarded as a vector
space over k. The Hilbert–Samuel function of the m-primary ideal a is defined by

Ha(k) = dimk(R/ak).

For large values of k, Ha(k) coincides with a polynomial of degree n called the Hilbert–Samuel
polynomial of a. The Samuel multiplicity e(a) of a is defined to be the leading coefficient of Ha(k)
multiplied by n!.
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It is well-known that the Samuel multiplicity satisfies a Brunn–Minkowski inequality [23, 22].
That is, for any two m-primary ideals a, b ∈ R we have

e(a)1/n + e(b)1/n ≥ e(ab)1/n. (1.1)

More generally we define multiplicity for m-primary graded sequences of subspaces. That is,
a sequence a1, a2, . . . of k-subspaces in R such that for all k and m we have akam ⊂ ak+m and
a1 contains a power of the maximal ideal m (Definition 6.2). We recall that if a and b are two
k-subspaces of R, ab denotes the k-span of all the xy where x ∈ a and y ∈ b. In particular,
a graded sequence a• where each ak is an m-primary ideal is an m-primary graded sequence of
subspaces. We call such a• an m-primary graded sequence of ideals.

For an m-primary graded sequence of subspaces we define the multiplicity e(a•) to be

e(a•) = n! lim
k→∞

dimk(R/ak)
kn

. (1.2)

(It is not a priori clear that the limit exists.)
We will use convex geometric arguments to prove the existence of the limit in (1.2) and a gener-

alization of (1.1) to m-primary graded sequences of subspaces, for a large class of local domains R.
Let us briefly discuss the convex geometry part of the story. Let C be a closed strongly convex

cone with apex at the origin (i.e. C is a convex cone and does not contain any line). We call a closed
convex set Γ ⊂ C a C-convex region if for any x ∈ Γ we have x + C ⊂ Γ. We say that Γ is cobounded
if C \ Γ is bounded. It is easy to verify that the set of cobounded C-convex regions is closed under
addition (Minkowski sum of convex sets) and multiplication with a positive real number. For a
cobounded C-convex region Γ we call the volume of the bounded region C \ Γ the covolume of Γ and
denote it by covol(Γ). Also we refer to C \ Γ as a C-coconvex body. (Instead of working with convex
regions one can alternatively work with coconvex bodies.) In [14, 15], similar to convex bodies
and their volumes (and mixed volumes), the authors develop a theory of convex regions and their
covolumes (and mixed covolumes). Moreover, they prove an analogue of the Alexandrov–Fenchel
inequality for mixed covolumes (see Theorem 3.3). The usual Alexandrov–Fenchel inequality is
an important inequality about mixed volumes of convex bodies in R

n and generalizes the classical
isoperimetric inequality and the Brunn–Minkowski inequality. In a similar way, the result in [14]
implies a Brunn–Minkowski inequality for covolumes, that is, for any two cobounded C-convex
regions Γ1 and Γ2 where C is an n-dimensional cone, we have

covol(Γ1)1/n + covol(Γ2)1/n ≥ covol(Γ1 + Γ2)1/n. (1.3)

We associate convex regions to m-primary graded sequences of subspaces (in particular, m-primary
ideals) and use inequality (1.3) to prove the Brunn–Minkowski inequality for multiplicities. To
associate a convex region to a graded sequence of subspaces, we need a valuation on the ring R. We
will assume that there is a valuation v on R with values in Z

n (with respect to a total order on Z
n

respecting addition) such that the residue field of v is k and, moreover, the following conditions (i)
and (ii) hold.1 We call such v a good valuation on R (Definition 8.3):

(i) Let S = v(R \ {0}) ∪ {0} be the value semigroup of (R, v). Let C = C(S) be the closure of
the convex hull of S. It is a closed convex cone with apex at the origin. We assume that C
is a strongly convex cone.

Let � : R
n → R be a linear function. For any a ∈ R let �≥a denote the half-space {x | �(x) ≥ a}.

Since the cone C = C(S) associated to the semigroup S is assumed to be strongly convex, we can
1In [10] a valuation v with values in Z

n and residue field k is called a valuation with one-dimensional leaves (see
Definition 8.1).
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find a linear function � such that the cone C lies in �≥0 and intersects the hyperplane �−1(0) only
at the origin.

(ii) We assume there exists r0 > 0 and a linear function � as above such that for any f ∈ R, if
�(v(f)) ≥ kr0 for some k > 0, then f ∈ mk.

Let Mk = v(mk \ {0}) denote the image of mk under the valuation v. Condition (ii) in particular
implies that for any k > 0 we have Mk ∩ �≥kr0 = S ∩ �≥kr0 .

As an example, let R = k[x1, . . . , xn](0) be the algebra of polynomials localized at the maximal
ideal (x1, . . . , xn). Then the map v which associates to a polynomial its lowest exponent (with
respect to some term order) defines a good valuation on R, and the value semigroup S coincides
with the semigroup Z

n
≥0, that is, the semigroup of all the integral points in the positive orthant

C = R
n
≥0. In the same fashion any regular local ring has a good valuation, as well as the local

ring of a toroidal singularity (Example 8.5 and Theorem 8.6). More generally, in Section 8 we
see that an analytically irreducible local domain R has a good valuation (Theorems 8.7 and 8.8;
see also [3, Theorem 4.2, Lemma 4.3]). A local ring R is said to be analytically irreducible if its
completion is an integral domain. Regular local rings and local rings of toroidal singularities are
analytically irreducible. (We should point out that in the first version of the paper we had addressed
only the case where R is a regular local ring or the local ring of a toroidal singularity.)

Given a good Z
n-valued valuation v on the domain R, we associate the (strongly) convex cone

C = C(R) ⊂ R
n to the domain R which is the closure of the convex hull of the value semigroup S.

Then to each m-primary graded sequence of subspaces a• in R we associate a convex region Γ(a•) ⊂ C
such that the set C \ Γ(a•) is bounded (Definition 8.11). The main result of the paper (Theorem 8.12)
is that the limit in (1.2) exists and

e(a•) = n! covol(Γ(a•)). (1.4)

Equality (1.4) and the Brunn–Minkowski inequality for covolumes (see (1.3) or Corollary 3.4) are
the main ingredients in proving a generalization of inequality (1.1) to m-primary graded sequences
of subspaces (Corollary 8.14).

We would like to point out that the construction of Γ(a•) is an analogue of the construction
of the Newton–Okounkov body of a linear system on an algebraic variety (see [21, 20, 10, 17]).
In fact, the approach and results in the present paper are analogous to the approach and results
in [10] regarding the asymptotic behavior of Hilbert functions of a general class of graded algebras.
In the present paper we also deal with certain graded algebras (i.e. m-primary graded sequences
of subspaces), but instead of the dimension of graded pieces we are interested in the codimension
(i.e. dimension of R/ak); that is why in our main theorem (Theorem 8.12) the covolume of a
convex region appears as opposed to the volume of a convex body [10, Theorem 2.31]. Also our
Theorem 8.12 generalizes [10, Corollary 3.2], which gives a formula for the degree of a projective
variety X in terms of the volume of its corresponding Newton–Okounkov body, because the Hilbert
function of a projective variety X can be regarded as the difference derivative of the Hilbert–Samuel
function of the affine cone over X at the origin and hence has the same leading coefficient.

On the other hand, the construction of Γ(a) generalizes the notion of the Newton diagram of a
power series (see [16; 1, Sect. 12.7]). To a monomial ideal in a polynomial ring (or a power series
ring), i.e. an ideal generated by monomials, one can associate its (unbounded) Newton polyhedron.
It is the convex hull of the exponents of the monomials appearing in the ideal. The Newton diagram
of a monomial ideal is the union of the bounded faces of the Newton polyhedron. One can see that
for a monomial ideal a, the convex region Γ(a) coincides with its Newton polyhedron (Theorem 7.5).
The main theorem in this paper (Theorem 8.12) for the case of monomial ideals recovers the local
case of the well-known Bernstein–Kushnirenko theorem about computing the multiplicity at the
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origin of a system f1(x) = . . . = fn(x) = 0 where the fi are generic functions from m-primary
monomial ideals (see Section 7 and [1, Sect. 12.7]).

Another immediate corollary of (1.4) is the following: let a be an m-primary ideal in R =
k[x1, . . . , xn](0). Fix a term order on Z

n and for each k > 0 let in(ak) denote the initial ideal of the
ideal ak (generated by the lowest terms of elements of ak). Then the sequence of numbers

e(in(ak))
kn

is decreasing and converges to e(a) as k → ∞ (Corollary 8.16).
The Brunn–Minkowski inequality proved in this paper is closely related to the more general

Alexandrov–Fenchel inequality for mixed multiplicities. Take m-primary ideals a1, . . . , an in a local
ring R = OX,p of a point p on an n-dimensional algebraic variety X. The mixed multiplicity
e(a1, . . . , an) is equal to the intersection multiplicity, at the origin, of the hypersurfaces Hi = {x |
fi(x) = 0}, i = 1, . . . , n, where each fi is a generic function from ai. Alternatively one can define
the mixed multiplicity as the polarization of the Hilbert–Samuel multiplicity e(a); i.e. it is the
unique function e(a1, . . . , an) which is invariant under permuting the arguments, is multi-additive
with respect to product of ideals, and for any m-primary ideal a the mixed multiplicity e(a, . . . , a)
coincides with e(a). In fact, in the above the ai need not be ideals and it suffices for them to be
m-primary subspaces.

The Alexandrov–Fenchel inequality is the following inequality among the mixed multiplicities
of the ai:

e(a1, a1, a3, . . . , an) e(a2, a2, a3, . . . , an) ≥ e(a1, a2, a3, . . . , an)2. (1.5)

When n = dim R = 2, it is easy to see that the Brunn–Minkowski inequality (1.1) and the
Alexandrov–Fenchel inequality (1.5) are equivalent. By a reduction-of-dimension theorem for mixed
multiplicities one can get a proof of the Alexandrov–Fenchel inequality (1.5) from the Brunn–
Minkowski inequality (1.1) for dim(R) = 2. The Brunn–Minkowski inequality (1.1) was originally
proved in [23, 22].

In a recent paper [11] we give a simple proof of the Alexandrov–Fenchel inequality for mixed mul-
tiplicities of ideals using arguments similar to but different from those of this paper. This then im-
plies an Alexandrov–Fenchel inequality for covolumes of convex regions (in a similar way that in [10,
12] the authors obtain an alternative proof of the usual Alexandrov–Fenchel inequality for volumes
of convex bodies from similar inequalities for intersection numbers of divisors on algebraic varieties).

We would like to point out that the Alexandrov–Fenchel inequality in [14] for covolumes of
coconvex bodies is related to an analogue of this inequality for convex bodies in a higher dimensional
hyperbolic space (or higher dimensional Minkowski space–time). From this point of view, the
Alexandrov–Fenchel inequality has been proved for certain coconvex bodies in [7].

After the first version of this note was completed, we learned about the recent papers [3, 4, 8],
which establish the existence of limit (1.2) in more general settings. We would also like to mention
the paper of Teissier [24], which discusses the Newton polyhedron of a power series and notes the
relationship/analogy between notions from local commutative algebra and convex geometry. Also
we were notified that, for ideals in a polynomial ring, ideas similar to the construction of Γ(a•) (see
Definition 8.11) appear in [19], where the highest term of polynomials is used instead of a valua-
tion. Moreover, in [19, Corollary 1.9] the Brunn–Minkowski inequality for multiplicities of graded
sequences of m-primary ideals is proved for regular local rings using Teissier’s Brunn–Minkowski
inequality (1.1).

Finally, as the final version of this paper was being prepared for publication, the preprint of
D. Cutkosky [5] appeared, in which the author uses similar methods to prove the Brunn–Minkowski
inequality for graded sequences of m-primary ideals in local domains.
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And few words about the organization of the paper: Section 2 recalls the basic background
material about volumes/mixed volumes of convex bodies. Section 3 is about convex regions and
their covolumes/mixed covolumes, which we can think of as a local version of the theory of mixed
volumes of convex bodies. In Sections 4 and 5 we associate a convex region to a primary sequence
of subsets in a semigroup and prove the main combinatorial result required later (Definition 5.7 and
Theorem 5.10). In Section 6 we recall some basic definitions and facts from commutative algebra
about multiplicities of m-primary ideals (and subspaces) in local rings. The next section (Section 7)
discusses the case of monomial ideals and the Bernstein–Kushnirenko theorem. Finally, in Section 8,
using a valuation on the ring R, we associate a convex region Γ(a•) to an m-primary graded sequence
of subspaces a• and prove the main results of this note (Theorem 8.12 and Corollary 8.14).

2. MIXED VOLUME OF CONVEX BODIES

The collection of all convex bodies in R
n is a cone, that is, we can add convex bodies and multiply

a convex body with a positive number. For two convex bodies Δ1,Δ2 ⊂ R
n, their (Minkowski) sum

Δ1 + Δ2 is {x + y | x ∈ Δ1, y ∈ Δ2}. Let vol denote the n-dimensional volume in R
n with respect

to the standard Euclidean metric. The function vol is a homogeneous polynomial of degree n
on the cone of convex bodies, i.e. its restriction to each finite dimensional section of the cone is a
homogeneous polynomial of degree n. In other words, for any collection of convex bodies Δ1, . . . ,Δr,
the function

PΔ1,...,Δr(λ1, . . . , λr) = vol(λ1Δ1 + . . . + λrΔr)

is a homogeneous polynomial of degree n in λ1, . . . ,λr. By definition the mixed volume V (Δ1, . . . ,Δn)
of an n-tuple (Δ1, . . . ,Δn) of convex bodies is the coefficient of the monomial λ1 . . . λn in the
polynomial PΔ1,...,Δn(λ1, . . . , λn) divided by n!. This definition implies that mixed volume is the
polarization of the volume polynomial, that is, it is the unique function on the n-tuples of convex
bodies satisfying the following:

(i) (symmetry). V is symmetric with respect to permuting the bodies Δ1, . . . ,Δn.
(ii) (multi-linearity). It is linear in each argument with respect to the Minkowski sum. The

linearity in the first argument means that for convex bodies Δ′
1,Δ

′′
1,Δ2, . . . ,Δn and real

numbers λ′, λ′′ ≥ 0 we have

V (λ′Δ′
1 + λ′′Δ′′

1,Δ2, . . . ,Δn) = λ′V (Δ′
1,Δ2, . . . ,Δn) + λ′′V (Δ′′

1 ,Δ2, . . . ,Δn).

(iii) (relation to volume). On the diagonal it coincides with the volume, i.e. if Δ1 = . . . = Δn = Δ,
then V (Δ1, . . . ,Δn) = vol(Δ).

The following inequality attributed to Alexandrov and Fenchel is important and very useful in
convex geometry (see [2]):

Theorem 2.1 (Alexandrov–Fenchel). Let Δ1, . . . ,Δn be convex bodies in R
n. Then

V (Δ1,Δ1,Δ3, . . . ,Δn)V (Δ2,Δ2,Δ3, . . . ,Δn) ≤ V (Δ1,Δ2, . . . ,Δn)2.

In dimension 2, this inequality is elementary. We call it the generalized isoperimetric inequality,
because when Δ2 is the unit ball, it coincides with the classical isoperimetric inequality. The
celebrated Brunn–Minkowski inequality concerns volume of convex bodies in R

n. It is an easy
corollary of the Alexandrov–Fenchel inequality. (For n = 2 it is equivalent to the Alexandrov–
Fenchel inequality.)

Theorem 2.2 (Brunn–Minkowski). Let Δ1 and Δ2 be convex bodies in R
n. Then

vol(Δ1)1/n + vol(Δ2)1/n ≤ vol(Δ1 + Δ2)1/n.
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3. MIXED COVOLUME OF CONVEX REGIONS

Let C be a strongly convex closed n-dimensional cone in R
n with apex at the origin. (A convex

cone is strongly convex if it does not contain any lines through the origin.) We are interested in
closed convex subsets of C which have bounded complement.

Definition 3.1. We call a closed convex subset Γ ⊂ C a C-convex region (or simply a convex
region when the cone C is understood from the context) if for any x ∈ Γ and y ∈ C we have x + y ∈ Γ.
Moreover, we say that a convex region Γ is cobounded if the complement C \ Γ is bounded. In this
case the volume of C \ Γ is finite, which we call the covolume of Γ and denote by covol(Γ). One
also refers to C \ Γ as a C-coconvex body.

The collection of C-convex regions (respectively, cobounded regions) is closed under the Minkow-
ski sum and multiplication by positive scalars. Similar to the volume of convex bodies, one proves
that the covolume of convex regions is a homogeneous polynomial [14]. More precisely, one has

Theorem 3.2. Let Γ1, . . . ,Γr be cobounded C-convex regions in the cone C. Then the function

PΓ1,...,Γr(λ1, . . . , λr) = covol(λ1Γ1 + . . . + λrΓr)

is a homogeneous polynomial of degree n in the λi.
As in the case of convex bodies, one uses this theorem to define mixed covolume of cobounded

regions. By definition the mixed covolume CV (Γ1, . . . ,Γn) of an n-tuple (Γ1, . . . ,Γn) of cobounded
convex regions is the coefficient of the monomial λ1 . . . λn in the polynomial PΓ1,...,Γn(λ1, . . . , λn)
divided by n!. That is, mixed covolume is the unique function on the n-tuples of cobounded regions
satisfying the following:

(i) (symmetry). CV is symmetric with respect to permuting the regions Γ1, . . . ,Γn.
(ii) (multi-linearity). It is linear in each argument with respect to the Minkowski sum.
(iii) (relation to covolume). For any cobounded region Γ ⊂ C,

CV (Γ, . . . ,Γ) = covol(Γ).

The mixed covolume satisfies an Alexandrov–Fenchel inequality [14]. Note that the inequality
is reversed compared to the Alexandrov–Fenchel inequality for mixed volumes of convex bodies.

Theorem 3.3 (Alexandrov–Fenchel inequality for mixed covolume). Let Γ1, . . . ,Γn be co-
bounded C-convex regions. Then

CV (Γ1,Γ1,Γ3, . . . ,Γn)CV (Γ2,Γ2,Γ3, . . . ,Γn) ≥ CV (Γ1,Γ2,Γ3, . . . ,Γn)2.

The (reversed) Alexandrov–Fenchel inequality implies a (reversed) Brunn–Minkowski inequality.
(For n = 2 it is equivalent to the Alexandrov–Fenchel inequality.)

Corollary 3.4 (Brunn–Minkowski inequality for covolume). Let Γ1 and Γ2 be cobounded
C-convex regions. Then

covol(Γ1)1/n + covol(Γ2)1/n ≥ covol(Γ1 + Γ2)1/n.

4. SEMIGROUPS OF INTEGRAL POINTS

In this section we recall some general facts from [10] about the asymptotic behavior of semigroups
of integral points. Let S ⊂ Z

n × Z≥0 be an additive semigroup. Let π : R
n × R → R denote the

projection onto the second factor, and let Sk = S ∩ π−1(k) be the set of points in S at level k.
For simplicity, assume that S1 
= ∅ and that S generates the whole lattice Z

n+1. Define the
function HS by

HS(k) = #Sk.
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We call HS the Hilbert function of the semigroup S. We wish to describe the asymptotic behavior
of HS as k → ∞.

Let C(S) be the closure of the convex hull of S ∪ {0}, that is, the smallest closed convex cone
(with apex at the origin) containing S. We call the projection of the convex set C(S) ∩ π−1(1)
to R

n (under the projection onto the first factor (x, 1) �→ x) the Newton–Okounkov convex set of
the semigroup S and denote it by Δ(S). In other words,

Δ(S) =
⋃
k>0

{x

k

∣∣∣ (x, k) ∈ Sk

}
.

(Using the fact that S is a semigroup, one can show that Δ(S) is convex.) If C(S) ∩ π−1(0) = {0},
then Δ(S) is compact and hence is a convex body.

The Newton–Okounkov convex set Δ(S) is responsible for the asymptotic behavior of the Hilbert
function of S (see [10, Corollary 1.16]):

Theorem 4.1. The limit

lim
k→∞

HS(k)
kn

exists and is equal to vol(Δ(S)).

5. PRIMARY SEQUENCES IN A SEMIGROUP AND CONVEX REGIONS

In this section we discuss the notion of a primary graded sequence of subsets in a semigroup and
describe its asymptotic behavior using Theorem 4.1. In Section 8 we will employ this to describe
the asymptotic behavior of the Hilbert–Samuel function of a graded sequence of m-primary ideals
in a local domain.

Let S ⊂ Z
n be an additive semigroup containing the origin. Without loss of generality we

assume that S generates the whole Z
n. Let as above C = C(S) denote the cone of S, i.e. the closure

of the convex hull of S = S ∪ {0}. We also assume that C is a strongly convex cone, i.e. it does not
contain any lines through the origin.

For two subsets I,J ⊂ S, the sum I + J is the set {x + y | x ∈ I, y ∈ J }. For any
integer k > 0, by the product k ∗ I we mean I + . . . + I (k times).

Definition 5.1. A graded sequence of subsets in S is a sequence I• = (I1,I2, . . .) of subsets
such that for any k,m > 0 we have Ik + Im ⊂ Ik+m.

Example 5.2. Let I ⊂ S. Then the sequence I• defined by Ik = k ∗ I is clearly a graded
sequence of subsets.

Let I ′
• and I ′′

• be graded sequences of subsets. Then the sequence I• = I ′
• + I ′′

• defined by

Ik = I ′
k + I ′′

k

is also a graded sequence of subsets, which we call the sum of the sequences I ′
• and I ′′

• .
Let � : R

n → R be a linear function. For any a ∈ R let �≥a (respectively, �>a) denote the half-
space {x | �(x) ≥ a} (respectively, {x | �(x) > a}), and similarly for �≤a and �<a. By assumption
the cone C = C(S) associated to the semigroup S is strongly convex. Thus we can find a linear
function � such that the cone C = C(S) lies in �≥0 and intersects the hyperplane �−1(0) only at the
origin. Let us fix such a linear function �.

We will be interested in graded sequences of subsets I• satisfying the following condition:
Definition 5.3. We say that a graded sequence of subsets I• is primary if there exists an

integer t0 > 0 such that for any integer k > 0 we have

Ik ∩ �≥kt0 = S ∩ �≥kt0. (5.1)
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Remark 5.4. One verifies that if �′ is another linear function such that C lies in �′≥0 and
it intersects the hyperplane �′−1(0) only at the origin, then it automatically satisfies (5.1) with
perhaps a different constant t′0 > 0. Hence the condition of being a primary graded sequence does
not depend on the linear function �. Nevertheless, when we refer to a primary graded sequence I•,
choices of a linear function � and an integer t0 > 0 are implied.

Proposition 5.5. Let I• be a primary graded sequence. Then for all k > 0 the set S \ Ik is
finite.

Proof. Since C intersects �−1(0) only at the origin, it follows that for any k > 0 the set C ∩ �<kt0

is bounded, which implies that S ∩ �<kt0 is finite. But by (5.1), S \ Ik ⊂ S ∩ �<kt0 and hence is
finite. �

Definition 5.6. Let I• be a primary graded sequence. Define the function HI• by

HI•(k) = #(S \ Ik).

(Note that by Proposition 5.5 this number is finite for all k > 0.) We call it the Hilbert–Samuel
function of I•.

To a primary graded sequence of subsets I• we can associate a C-convex region Γ(I•) (see
Definition 3.1). This convex set encodes information about the asymptotic behavior of the Hilbert–
Samuel function of I•.

Definition 5.7. Let I• be a primary graded sequence of subsets. Define the convex set Γ(I•) by

Γ(I•) =
⋃
k>0

{x

k

∣∣∣ x ∈ Ik

}
.

(One can show that Γ(I•) is an unbounded convex set in C.)
Proposition 5.8. Let I• be a primary graded sequence. Then Γ = Γ(I•) is a C-convex region

in the cone C, i.e. for any x ∈ Γ, x + C ⊂ Γ. Moreover, the region Γ is cobounded, i.e. C \ Γ is
bounded.

Proof. Let � and t0 be as in Definition 5.3. From the definitions it follows that the region Γ
contains C ∩ �≥t0 . Thus C \ Γ ⊂ C ∩ �<t0 and hence is bounded. Next let x ∈ Γ. Since x + C ⊂ C,
Γ contains the set (x + C) ∩ �≥t0 . But the convex hull of x and (x + C) ∩ �≥t0 is x + C. Thus
x + C ⊂ Γ because Γ is convex. �

The following is an important example of a primary graded sequence in a semigroup S.
Proposition 5.9. Let C be an n-dimensional strongly convex rational polyhedral cone in R

n

and let S = C ∩ Z
n. Also let I ⊂ S be a subset such that S \ I is finite. Then the sequence I•

defined by Ik := k ∗ I is a primary graded sequence and Γ(I•) = conv(I).
Proof. Since S \ I is finite, there exists t1 > 0 such that S ∩ �≥t1 ⊂ I. Put M1 = S ∩ �≥t1 .

Because C is a rational polyhedral cone, M1 is a finitely generated semigroup. Let v1, . . . , vs

be semigroup generators for M1. Let t0 > 0 be greater than all the �(vi). For k > 0 take
x ∈ S ∩ �≥kt0 ⊂ M1. Then x =

∑s
i=1 civi for ci ∈ Z≥0. Thus kt0 ≤ �(x) =

∑
i ci�(vi) ≤

(∑
i ci

)
t0.

This implies that k ≤
∑

i ci and hence
(∑

i ci

)
∗M1 ⊂ k ∗M1. It follows that x ∈ k ∗M1. That

is, S ∩ �≥kt0 = (k ∗M1) ∩ �≥kt0 ⊂ (k ∗ I) ∩ �≥kt0 and hence S ∩ �≥kt0 = (k ∗ I) ∩ �≥kt0 as required.
The assertion Γ(I•) = conv(I•) follows from the observation that conv(k ∗ I) = k conv(I). �

The following is our main result about the asymptotic behavior of a primary graded sequence.
Theorem 5.10. Let I• be a primary graded sequence. Then

lim
k→∞

HI•(k)
kn

exists and is equal to covol(Γ(I•)).
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Proof. Let t0 > 0 be as in Definition 5.3. Then for all k > 0 we have S ∩ �≥kt0 = Ik ∩ �≥kt0 .
Moreover, take t0 to be large enough so that the finite set I1 ∩ �<t0 generates the lattice Z

n (this is
possible because S and hence I1 generate Z

n). Consider

S̃ =
{
(x, k)

∣∣ x ∈ Ik ∩ �<kt0

}
, T̃ =

{
(x, k)

∣∣ x ∈ S ∩ �<kt0

}
.

S̃ and T̃ are semigroups in Z
n × Z≥0 and we have S̃ ⊂ T̃ . From the definition it follows that both

of the groups generated by S̃ and T̃ are Z
n+1. Also the Newton–Okounkov bodies of S̃ and T̃ are

Δ(S̃) = Γ(I•) ∩ Δ(t0), Δ(T̃ ) = Δ(t0),

where Δ(t0) = C ∩ �≤t0 . Since S ∩ �≥kt0 = Ik ∩ �≥kt0 , we have

S \ Ik = T̃k \ S̃k.

Here as usual S̃k = {(x, k) | (x, k) ∈ S̃} (respectively, T̃k) denotes the set of points in S̃ (respectively,
in T̃ ) at level k. Hence

HI•(k) = #T̃k − #S̃k.

By Theorem 4.1 we have

lim
k→∞

#S̃k

kn
= vol(Δ(S̃)), lim

k→∞

#T̃k

kn
= vol(Δ(t0)).

Thus

lim
k→∞

#(S \ Ik)
kn

= vol(Δ(t0)) − vol(Δ(S̃)).

On the other hand, we have
Δ(t0) \ Δ(S̃) = C \ Γ(I•),

and hence vol(Δ(t0)) − vol(Δ(S̃)) = covol(Γ(I•)). This finishes the proof. �
Definition 5.11. For a primary graded sequence I• we denote n! limk→∞ HI•(k)/kn by e(I•).

Motivated by commutative algebra, we call it the multiplicity of I•. We have just proved that
e(I•) = n! covol(Γ(I•)). Note that it is possible for a primary graded sequence to have multiplicity
equal to zero.

The following additivity property is straightforward from the definition.
Proposition 5.12. Let I ′

• and I ′′
• be primary graded sequences. We have

Γ(I ′
•) + Γ(I ′′

• ) = Γ(I ′
• + I ′′

• ).

Proof. From the definition it is clear that Γ(I ′
• + I ′′

• ) ⊂ Γ(I ′
•) + Γ(I ′′

• ). We need to show
the reverse inclusion. Let I• denote I ′

• + I ′′
• . For k,m > 0 take x ∈ I ′

k and y ∈ I ′′
m. Then

(x/k) + (y/m) = (mx + ky)/km ∈ (1/km)Ikm. This shows that (x/k) + (y/m) ∈ Γ(I•), which
finishes the proof. �

Let I1,•, . . . ,In,• be n primary graded sequences. Define the function PI1,•,...,In,• : N
n → N by

PI1,•,...,In,•(k1, . . . , kn) = e(k1 ∗ I1,• + . . . + kn ∗ In,•).

Theorem 5.13. The function PI1,•,...,In,• is a homogeneous polynomial of degree n in k1, . . . ,kn.
Proof. Follows immediately from Proposition 5.12 and Theorems 5.10 and 3.2. �
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Definition 5.14. Let I1,•, . . . ,In,• be primary graded sequences. Define the mixed multiplicity
e(I1,•, . . . ,In,•) to be the coefficient of k1 . . . kn in the polynomial PI1,•,...,In,• divided by n!.

From Theorem 5.10 and Proposition 5.12 we have the following corollary:
Corollary 5.15.

e(I1,•, . . . ,In,•) = n! CV (Γ(I1,•), . . . ,Γ(In,•)),

where as before CV denotes the mixed covolume of cobounded regions.
From Theorem 3.3 and Corollary 3.4 we then obtain
Corollary 5.16 (Alexandrov–Fenchel inequality for mixed multiplicity in semigroups). For

primary graded sequences I1,•, . . . ,In,• in the semigroup S we have

e(I1,•,I1,•,I3,•, . . . ,In,•) e(I2,•,I2,•,I3,•, . . . ,In,•) ≥ e(I1,•,I2,•,I3,•, . . . ,In,•)2.

Corollary 5.17 (Brunn–Minkowski inequality for multiplicities in semigroups). Let I• and J•
be primary graded sequences in the semigroup S. We have

e(I•)1/n + e(J•)1/n ≥ e(I• + J•)1/n.

6. MULTIPLICITIES OF IDEALS AND SUBSPACES IN LOCAL RINGS

Let R be a Noetherian local domain of Krull dimension n over a field k, and with maximal
ideal m. We also assume that the residue field R/m is k.

Example 6.1. Let X be an irreducible variety of dimension n over k, and let p be a point
in X. Then the local ring R = OX,p (consisting of rational functions on X which are regular in a
neighborhood of p) is a Noetherian local domain of Krull dimension n over k. The ideal m consists
of functions which vanish at p.

If a, b ⊂ R are two k-subspaces, then by ab we denote the k-span of all the xy where x ∈ a and
y ∈ b. Note that if a and b are ideals in R, then ab coincides with the product of a and b as ideals.

Definition 6.2. (i) A k-subspace a in R is called m-primary if it contains a power of the
maximal ideal m.

(ii) A graded sequence of subspaces is a sequence a• = (a1, a2, . . .) of k-subspaces in R such
that for all k,m > 0 we have akam ⊂ ak+m. We call a• an m-primary sequence if moreover a1 is
m-primary. It then follows that every ak is m-primary and hence dimk(R/ak) is finite. (If each ak

is an m-primary ideal in R, we call a• an m-primary graded sequence of ideals.)
When k is algebraically closed, an ideal a in R = OX,p is m-primary if the subvariety it defines

around p coincides with the single point p itself.
Example 6.3. Let a be an m-primary subspace. Then the sequence a• defined by ak = ak is

an m-primary graded sequence of subspaces.
Let a• and b• be m-primary graded sequences of subspaces. Then the sequence c• = a•b•

defined by
ck = akbk

is also an m-primary graded sequence of subspaces, which we call the product of a• and b•.
Definition 6.4. Let a• be an m-primary graded sequence of subspaces. Define the func-

tion Ha• by
Ha•(k) = dimk(R/ak).
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We call it the Hilbert–Samuel function of a•. The Hilbert–Samuel function Ha(k) of an m-pri-
mary subspace a is the Hilbert–Samuel function of the sequence a• = (a, a2, . . .). That is,
Ha(k) = dimk(R/ak).

Remark 6.5. For an m-primary ideal a it is well-known that, for sufficiently large values of k,
the Hilbert–Samuel function Ha coincides with a polynomial of degree n called the Hilbert–Samuel
polynomial of a [25].

Definition 6.6. Let a• be an m-primary graded sequence of subspaces. We define the multi-
plicity e(a•) to be

e(a•) = n! lim
k→∞

Ha•(k)
kn

.

(It is not a priori clear that the limit exists.) The multiplicity e(a) of an m-primary ideal a is the
multiplicity of its associated sequence (a, a2, . . .). That is,

e(a) = n! lim
k→∞

Ha(k)
kn

.

(Note that by Remark 6.5 the limit exists in this case.)
The notion of multiplicity comes from the following basic example:
Example 6.7. Let a be an m-primary subspace in the local ring R = OX,p of a point p in

an irreducible variety X over an algebraically closed filed k. Let f1, . . . , fn be generic elements
in a. Then the multiplicity e(a) is equal to the intersection multiplicity at p of the hypersurfaces
Hi = {x | fi(x) = 0}, i = 1, . . . , n.

In Section 8 we use the material in Section 5 to give a formula for e(a•) in terms of the covolume
of a convex region.

One can also define the notion of mixed multiplicity for m-primary ideals as the polarization of
the Hilbert–Samuel multiplicity e(a); i.e. it is the unique function e(a1, . . . , an) which is invariant
under permuting the arguments, is multi-additive with respect to product, and for any m-primary
ideal a the mixed multiplicity e(a, . . . , a) coincides with e(a). In fact one can show that in the above
definition of mixed multiplicity the ai need not be ideals and it suffices for them to be m-primary
subspaces.

Similar to multiplicity we have the following geometric meaning for the notion of mixed mul-
tiplicity when R = OX,p is the local ring of a point p on an n-dimensional algebraic variety X.
Take m-primary subspaces a1, . . . , an in R. The mixed multiplicity e(a1, . . . , an) is equal to the
intersection multiplicity, at the origin, of the hypersurfaces Hi = {x | fi(x) = 0}, i = 1, . . . , n,
where each fi is a generic function from the ai.

7. CASE OF MONOMIAL IDEALS AND NEWTON POLYHEDRA

In this section we discuss the case of monomial ideals. It is related to the classical notion of
Newton polyhedron of a power series in n variables. We will see that our Theorem 5.10 in this case
immediately recovers (and generalizes) the local version of the celebrated Bernstein–Kushnirenko
theorem [16; 1, Sect. 12.7]).

Let R be the local ring of an affine toric variety at its torus fixed point. The algebra R can
be realized as follows: Let C ⊂ R

n be an n-dimensional strongly convex rational polyhedral cone
with apex at the origin, that is, C is an n-dimensional convex cone generated by a finite number
of rational vectors and it does not contain any lines through the origin. Consider the semigroup
algebra over k of the semigroup of integral points S = C ∩ Z

n. In other words, consider the algebra
of Laurent polynomials consisting of all the f of the form f =

∑
α∈C∩Zn cαxα, where we have used
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the shorthand notation x = (x1, . . . , xn), α = (a1, . . . , an) and xα = xa1
1 . . . xan

n . Let R be the
localization of this Laurent polynomial algebra at the maximal ideal m generated by nonconstant
monomials. (Similarly, instead of R we can take its completion at the maximal ideal m, which is an
algebra of power series.)

Definition 7.1. Let a be an m-primary monomial ideal in R, that is, an m-primary ideal
generated by monomials. To a we can associate a subset I(a) ⊂ C ∩ Z

n by

I(a) = {α | xα ∈ a}.

The convex hull Γ(a) of I(a) is usually called the Newton polyhedron of the monomial ideal a. It is
a convex unbounded polyhedron in C; moreover, it is a C-convex region. The Newton diagram of a

is the union of bounded faces of its Newton polyhedron.
Remark 7.2. It is easy to see that if a is an ideal in R, then I = I(a) is a semigroup ideal in

S = C ∩ Z
n; that is, if x ∈ I and y ∈ S, then x + y ∈ I.

Let a be an m-primary monomial ideal. Then for any k > 0 we have I(ak) = k ∗ I(a). It
follows from Proposition 5.9 that I• defined by Ik = k ∗ I(a) is a primary graded sequence in
S = C ∩ Z

n and the convex region Γ(I•) associated to I• coincides with the Newton polyhedron
Γ(a) = conv(I(a)) defined above.

More generally, let a• be an m-primary graded sequence of monomial ideals in R. Associate a
graded sequence I• = I(a•) in S to a• by

Ik = I(ak) = {α | xα ∈ ak}.

Clearly, for any k we have k ∗ I(a1) = I(ak
1) ⊂ I(ak). From the above we then conclude the

following:
Proposition 7.3. The graded sequence I• = I(a•) is a primary graded sequence in the sense

of Definition 5.3.
Let Γ(a•) denote the convex region associated to the primary graded sequence I• = I(a•)

(Definition 5.7). We make the following important observation that a• �→ Γ(a•) is additive with
respect to the product of graded sequences of monomial ideals.

Proposition 7.4. Let a• and b• be m-primary graded sequences of monomial ideals in R.
Then I(a•b•) = I(a•) + I(b•). It follows from Proposition 5.12 that

Γ(a•b•) = Γ(a•) + Γ(b•).

From Propositions 7.3 and 7.4 and Theorem 5.10 we readily obtain the following.
Theorem 7.5. Let a• be an m-primary graded sequence of monomial ideals in R. Then

e(a•) = n! covol(Γ(a•)).

In particular, if a is an m-primary monomial ideal, then

e(a) = n! covol(Γ(a)).

Here Γ(a) is the Newton polyhedron of a, i.e. the convex hull of I(a).
Theorem 7.6. Let a1, . . . , an be m-primary monomial ideals in R. Then the mixed multiplicity

e(a1, . . . , an) is given by
e(a1, . . . , an) = n! CV (Γ(a1), . . . ,Γ(an)),

where as before CV denotes the mixed covolume of cobounded convex regions.
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Remark 7.7. Using Theorem 5.13, one can define the mixed multiplicity of m-primary graded
sequences of monomial ideals. Then Theorem 7.6 can immediately be extended to mixed multiplic-
ities of m-primary graded sequences of monomial ideals.

One knows that the mixed multiplicity of an n-tuple (a1, . . . , an) of m-primary subspaces in R
gives the intersection multiplicity, at the origin, of hypersurfaces Hi = {x | fi(x) = 0}, i = 1, . . . , n,
where each fi is a generic element from the subspace ai. Theorem 7.6 then gives the following
corollary.

Corollary 7.8 (local Bernstein–Kushnirenko theorem). Let a1, . . . , an be m-primary mono-
mial ideals in R. Consider a system of equations f1(x) = . . . = fn(x) = 0 where each fi is a
generic element from ai. Then the intersection multiplicity at the origin of this system is equal to
n! covol(Γ(a1), . . . ,Γ(an)).

Remark 7.9. (i) When R is the algebra of polynomials k[x1, . . . , xn](0) localized at the origin
(or the algebra of power series localized at the origin), i.e. the case corresponding to the local ring of
a smooth affine toric variety, Corollary 7.8 is the local version of the classical Bernstein–Kushnirenko
theorem [1, Sect. 12.7].

(ii) As opposed to the proof above, the original proof of the Kushnirenko theorem is quite
involved.

(iii) Corollary 7.8 has been known to the second author since the early 1990s (cf. [13]), although,
as far as the authors know, it has not been published.

8. MAIN RESULTS

Let R be a domain over a field k. Equip the group Z
n with a total order respecting addition.

Definition 8.1 (valuation). A valuation v : R \ {0} → Z
n is a function satisfying the fol-

lowing:

(1) For all 0 
= f, g ∈ R, v(fg) = v(f) + v(g).
(2) For all 0 
= f, g ∈ R with f + g 
= 0 we have v(f + g) ≥ min(v(f), v(g)). (One then shows

that when v(f) 
= v(g), v(f + g) = min(v(f), v(g)).)
(3) For all 0 
= λ ∈ k, v(λ) = 0.

We say that v has one-dimensional leaves if whenever v(f) = v(g), there exists λ ∈ k with
v(g + λf) > v(g).

By definition S = v(R \ {0}) ∪ {0} is an additive subsemigroup of Z
n, which we call the value

semigroup of (R, v). Any valuation on R extends to the field of fractions K of R by defining
v(f/g) = v(f) − v(g). The set Rv = {0 
= f ∈ K | v(f) ≥ 0} ∪ {0} is a local subring of K called
the valuation ring of v. Also mv = {0 
= f ∈ K | v(f) > 0} ∪ {0} is the maximal ideal in Rv. The
field Rv/mv is called the residue field of v. One can see that v has one-dimensional leaves if and
only if the residue field of v is k.

Definition 8.2. For a subspace a in R define I = I(a) ⊂ S by

I = {v(f) | f ∈ a \ {0}}.

Similarly, for a graded sequence of subspaces a• in R, define I• = I(a•) by

Ik = I(ak) = {v(f) | f ∈ ak \ {0}}.

For the rest of the paper we assume that R is a Noetherian local domain of dimension n such
that R is an algebra over a field k isomorphic to the residue field R/m, where m is the maximal
ideal of R. Moreover, we assume that R has a good valuation in the following sense:
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Definition 8.3. We say that a Z
n-valued valuation v on R with one-dimensional leaves is good

if the following hold:

(i) The value semigroup S = v(R \ {0}) ∪ {0} generates the whole lattice Z
n, and its associated

cone C(S) is a strongly convex cone (recall that C(S) is the closure of convex hull of S). It
implies that there is a linear function � : R

n → R such that C(S) lies in �≥0 and intersects
�−1(0) only at the origin.

(ii) We assume there exists r0 > 0 and a linear function � as above such that for any f ∈ R if
�(v(f)) ≥ kr0 for some k > 0, then f ∈ mk.

Condition (ii) in particular implies that for any k > 0 we have

I(mk) ∩ �≥kr0 = S ∩ �≥kr0.

In other words, the sequence M• given by Mk = I(mk) is a primary graded sequence in the value
semigroup S.

The following is a generalization of Proposition 7.3.
Proposition 8.4. Let v be a good valuation on R. Let a• be an m-primary graded sequence

of subspaces in R. Then the associated graded sequence I• = I(a•) is a primary graded sequence in
the value semigroup S in the sense of Definition 5.3.

Proof. Let m > 0 be such that mm ⊂ a1. Then for any k > 0 we have mkm ⊂ ak, which then
implies that Mkm ⊂ Ik. This proves the claim. �

Example 8.5. As in Section 7, let R be the local ring of an affine toric variety at its torus
fixed point: Take C ⊂ R

n to be an n-dimensional strongly convex rational polyhedral cone with
apex at the origin. Consider the algebra of Laurent polynomials consisting of all the f of the form
f =

∑
α∈C∩Zn cαxα. Then R is the localization of this algebra at the maximal ideal generated

by nonconstant monomials. Take a total order on Z
n which respects addition and is such that

the semigroup S = C ∩ Z
n is well-ordered. We also require that if �(α) > �(β), then α > β, for

any α, β ∈ Z
n. Such a total order can be constructed as follows: pick linear functions �2, . . . , �n

on R
n such that �, �2, . . . , �n are linearly independent and for each i the cone C lies in (�i)≥0. Given

α, β ∈ Z
n, set α > β if �(α) > �(β), or �(α) = �(β) and �2(α) > �2(β), and so on.

Now one defines a (lowest term) valuation v on the algebra R with values in S = C ∩ Z
n as

follows: For f =
∑

α∈S cαxα put
v(f) = min{α | cα 
= 0}.

Clearly, v extends to the field of fractions of Laurent polynomials and in particular to R. Similarly
v can be defined for formal power series and formal Laurent series. It is easy to see that v is a
valuation with one-dimensional leaves on R. Let us show that it is moreover a good valuation.
Take 0 
= f ∈ R. Without loss of generality we can take f to be a Laurent series f =

∑
α∈S cαxα.

Applying Proposition 5.9 to the sequence I•, where Ik = {α | xα ∈ mk}, we know that there exists
r0 > 0 with the following property: if for some α ∈ S we have �(α) ≥ kr0, then xα ∈ mk. On the
other hand, if α ≤ β, then �(α) ≤ �(β). Thus �(β) ≥ kr0 and hence xβ ∈ mk. It follows that if
�(v(f)) ≥ kr0, then all the nonzero monomials in f lie in mk and hence f ∈ mk. This proves the
claim that v is a good valuation on R.

The arguments in Example 8.5 in particular show the following:
Theorem 8.6. If R is a regular local ring, then R has a good valuation.
Proof. The completion R of R is isomorphic to an algebra of formal power series over the

residue field k. The above construction gives a good valuation on R. One verifies that the restriction
of this valuation to R is still a good valuation. �
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More generally, one has
Theorem 8.7. Suppose R is an analytically irreducible local domain (i.e. the completion of R

has no zero divisors). Moreover, suppose that there exists a regular local ring S containing R such
that S is essentially of finite type over R, R and S have the same quotient field k and the residue
field map R/mR → S/mS is an isomorphism. Then R has a good valuation.

Proof. By Theorem 8.6, S has a good valuation. By the linear Zariski subspace theorem
in [9, Theorem 1] or [3, Lemma 4.3], v|R is a good valuation for R too. �

Using Theorem 8.7, as in [3, Theorem 5.2] we have the following:
Theorem 8.8. Let R be an analytically irreducible local domain over k. Then R has a good

valuation.
Proposition 8.9. Let I = I(a) be the subset of integral points associated to an m-primary

subspace a in R. Then we have
dimk(R/a) = #(S \ I).

Proof. Take m > 0 with mm ⊂ a and let r0 and � be as in Definition 8.3. If �(v(f)) > mr0, then
f ∈ mm ⊂ a. Thus the set of valuations of elements in R \ a is bounded. In particular S \ I is finite.
Let {v1, . . . , vr} = S \ I. Let B = {b1, . . . , br} ⊂ R be such that v(bi) = vi, i = 1, . . . , r. We claim
that no linear combination of b1, . . . , br lies in a. By contradiction suppose

∑
i cibi = a ∈ a. Then

v
(∑

i cibi

)
is equal to v(bj) for some j. This implies that v(bj) should lie in I, which contradicts

the choice of the vi. Thus the image of B in R/a is a linearly independent set. Among the set of
elements in R that are not in the span of a and B take f with maximum v(f). If v(f) = v(b) for
some b ∈ B, then we can subtract a multiple of b from f getting an element g with v(g) > v(f),
which contradicts the choice of f . Similarly v(f) cannot lie in I; otherwise we can subtract an
element of a from f to arrive at a similar contradiction. This shows that the set of images of
elements of B in R/a is a k-vector space basis for R/a, which proves the proposition. �

Corollary 8.10. Let a• be an m-primary graded sequence of subspaces in R and put I• = I(a•).
We then have

e(a•) = e(I•).

Definition 8.11. To the sequence of subspaces a• we associate a C-convex region Γ(a•), which
is the convex region Γ(I•) associated to the primary sequence I• = I(a•). The convex region Γ(a•)
depends on the choice of the valuation v. By definition the convex region Γ(a) associated to an
m-primary subspace a is the convex region associated to the sequence of subspaces (a, a2, a3, . . .).

Theorem 8.12. Let a• be an m-primary graded sequence of subspaces in R. Then

e(a•) = n! lim
k→∞

Ha•(k)
kn

= n! covol(Γ(a•)).

In particular, if a is an m-primary ideal, we have e(a) = n! covol(Γ(a)).
The following superadditivity follows from Proposition 5.12. Note that I(a•) + I(b•) ⊂ I(a•b•)

(cf. Proposition 7.4).
Proposition 8.13. Let a• and b• be two m-primary graded sequences of subspaces in R.

We have
Γ(a•) + Γ(b•) ⊂ Γ(a•b•).

From Theorem 8.12, Proposition 8.13 and Corollary 3.4 we readily obtain
Corollary 8.14 (Brunn–Minkowski inequality for multiplicities). Let a• and b• be two m-pri-

mary graded sequences of subspaces in R. Then

e(a•)1/n + e(b•)1/n ≥ e(a•b•)1/n. (8.1)
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Remark 8.15. By Theorem 8.8 and Corollary 8.14 we obtain the Brunn–Minkowski inequal-
ity (8.1) for an analytically irreducible local domain R. But in fact the assumption that R is
analytically irreducible is not necessary: Suppose R is not necessarily analytically irreducible. First
by a reduction theorem the statement can be reduced to dimR = n = 2. In dimension 2, in-
equality (8.1) implies that the mixed multiplicity of ideals e(·, ·), regarded as a bilinear form on
the (multiplicative) semigroup of m-primary graded sequences of ideals, is positive semidefinite
restricted to each local analytic irreducible component. But the sum of positive semidefinite forms
is again positive semidefinite, which implies that Corollary 8.14 should hold for R itself.

As another corollary of Theorem 8.12 we can immediately obtain inequalities between the mul-
tiplicity of an m-primary ideal, multiplicity of its associated initial ideal and its length. Let R be a
regular local ring of dimension n with a good valuation (as in Example 8.5 and Theorem 8.6).

Corollary 8.16 (multiplicity of an ideal versus multiplicity of its initial ideal). Let a be an
m-primary ideal in R and let in(a) denote the initial ideal of a, that is, the monomial ideal in the
polynomial algebra localized at the origin k[x1, . . . , xn](0) corresponding to the semigroup ideal I(a).
We have

e(a) ≤ e(in(a)) ≤ n! dimk(R/a).

More generally, if in(ak) denotes the monomial ideal in k[x1, . . . , xn](0) corresponding to the semi-
group ideal I(ak), then the sequence of numbers

e(in(ak))
kn

is decreasing and converges to e(a) as k → ∞.
Proof. From the definition one sees that Γ(in(a)) is the convex hull of I(a) (see Theorem 7.5).

It easily follows that
I(a) ⊂ Γ(in(a)) ⊂ Γ(a).

We now notice that dimk(R/a) is the number of integral points in S \ I(a), which in turn is greater
than or equal to the volume of R

n
≥0 \ Γ(in(a)) and hence the volume of R

n
≥0 \ Γ(a). More generally,

from the definition of Γ(a) we have an increasing sequence of convex regions:

Γ(in(a)) ⊂ 1
2
Γ(in(a2)) ⊂ . . . ⊂ Γ(a) =

∞⋃
k=1

1
k

Γ(in(ak)).

Now from Theorem 8.12 we have e(a) = n! covol(Γ(a)) and e(in(ak)) = n! covol(Γ(in(ak))) for
each k. This finishes the proof. �

The inequality e(a) ≤ n! dimk(R/a) is a special case of an inequality of Lech [18, Theorem 3]
(see also [6, Lemma 1.3]).

ACKNOWLEDGMENTS

The first author would like to thank Dale Cutkosky, Vladlen Timorin and Javid Validashti for
helpful discussions. We are also thankful to Bernard Teissier, Dale Cutkosky, Francois Fillastre and
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